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February 3, 2005

Chapter 6 - Linear Systems

Problem 6.1 - 4

A =



3 1 0 0 ... ... 0
1 3 1 0 ... ... 0
0 1 3 1 0 ... 0
...

. . .
0 ... ... 0 1 3 1
0 ... ... 0 0 1 3


x =



x1

x2
...

xj
...

xn


b =



4
5
5
...
5
4



3x1 + 1x2 + 0x3 + cdots + 0xj + · · ·+ 0xn = 4
1x1 + 3x2 + 1x3 + 0x4 + · · ·+ · · ·+ 0xn = 5

0x1 + 1x2 + 3x3 + 1x4 + 0x5 + · · ·+ 0xn = 5
· · ·

0x1 + · · ·+ 1xj−1 + 3xj + 1xj+1 + · · ·+ 0xn = 5
· · ·

0x1 + · · ·+ 0xj + · · ·+ 0xn−2 + 1xn−1 + 3xn = 4

So, the linear system of order n is:

3x1 + x2 = 4
xj−1 + 3xj + xj+1 = 5 j = 2, 3, . . . , n− 1

xn−1 + 3xn = 4
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Problem 6.1 - 5

A=zeros(n);
for i=1:n

for j=1:n
if i<j

A(i,j)=i/j;
else

A(i,j)=j/i;
end

end
end
b=zeros(n,1);
for i=1:n

b(i,1)=(-1)^(-(i+1));
end

Problem 6.1 - 6

beta=1;
A=zeros(n);
for j=1:n

A(1,j)=beta
A(j,1)=beta

end
for i=2:n

for j=2:n
A(i,j)=A(i-1,j)+A(i,j-1)

end
end
b=zeros(n,1);
for i=1:n

b(i,1)=(-1)^(i-1)/i;
end
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Problem 6.2 - 7

From problem 5: if A = wwT = 1 ⇒ A2 = A = 1

From problem 6: if B = BT , so: B =
[

a b
c d

]
BT =

[
a c
b d

]
⇒ b = c

⇒ B =
[

a b
b d

]
Now, define B as B = I − 2wwT ,

BT = IT − 2(wwT )T = I − 2(wT )T wT = I − 2wwT = B,

(since (AT )T = A and (AB)T = BT AT )

B2 = (I − 2wwT )2 = I − 4wwT + 4(wwT )2,

= I − 4wwT + 4wwT , using problem 5.

= I

since B2 = B.B = I, and B.B−1 = I, so: B−1 = B

Problem 6.2 - 9

Associative law for matrix multiplication: (AB)C = A(BC),

so, x = (uT v)wT = uT (vwT ),

where, [u]n×1, [uT ]1×n, [v]n×1, [w]n×1, [wT ]1×n,and

[uT ]1×n × [v]n×1 × [wT ]1×n = [x]n×1,

for x = (uT v)wT ,

3



[u1...un].


v1

v2
...

vn

 → n multiplications and (n− 1) additions.

again ×


w1

w2
...

wn

 → another n multiplications.

So, n + n = 2n multiplications and n− 1 additions .

for x = uT (vwT ),
v1

v2
...

vn

 .[w1...wn]→ a matrix of size (n× n)→ n2 multiplications.

[u1u2...un].(vwT )→ a matrix of size (1×n)→ another n2 multiplications and n(n−1)
additions.

So, n2 + n2 = 2n2 multiplications and n(n− 1) additions .

Obviously the first way is preferable.

Problem 6.2 - 10

[A]m×n, [B]n×p, [C]p×q, [AB]m×p, [BC]n×q, [ABC]m×q

[(AB)C]ij =
∑p

l=1(AB)ilClj =
∑p

l=1[
∑n

k=1 AikBkl]Clj

(Multiplication/Division)MD[AB] = MD[ []m×n[]n×p ] = mnp,

likewise, MD[ []m×p[]p×q ] = mpq,
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So, MD[(AB)C] = mnp + mpq = mp(n + q).

[A(BC)]ij =
∑n

k=1 Aik(BC)kj =
∑n

k=1 Aik[
∑p

l=1 BklClj ]

MD[BC] = MD[ []n×p[]p×q ] = npq,

and, MD[ []m×n[]n×q ] = mnq,

So, MD[A(BC)] = npq + mnq = nq(p + m).

If p=1, and q=m=n=100. then,

MD[(AB)C] = 100(100 + 100) = 20000, MD[A(BC)] = 100× 100(101) = 1010000.

Thus the product (AB)C is generally much less expensive than the product A(BC).

Problem 6.3 - 1

The modified Matlab program is :

function [x,lu,piv]= newGEpivot (A,b)
[m,n]=size(A);
if m~=n

error(’The matrix is not square. ’);
end
m=length(b);
if m~=n

error(’The matrix and the vecttor do not match in size. ’);
end
piv = (1:n)’;
for k=1:n-1

A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for i= k+1:n

A(i,k+1:n)= A(i,k+1:n)-A(i,k)*A(k,k+1:n);
end
b(k+1:n)= b(k+1:n) - A(k+1:n,k)*b(k);
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end

x=zeros(n,1);
x(n)=b(n)/A(n,n);
for i = n-1 : -1 : 1

x(i)= (b(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);
end
lu=A;

And using this program the results are:
(a) x1 = 1, x2 = 2, x3 = −2.
(b) x1 = −2.3750, x2 = 4.2500, x3 = −0.5000, x4 = −1.0000.
(c) x1 = −3, x2 = −2, x3 = 1.

Problem 6.3 - 2

This is a straightforward use of GEpivot. The matrix of coefficients is a well-conditioned
matrix, and the solution of the linear system should be very accurate.

For example for n = 5, we have:

n=5;
A= ones(n);
for i =1 : n

for j = 1 : n
A(i,j)= max(i,j);

end
end
b= ones(n,1);
[x,lu,piv]=GEpivot(A,b);
x

The result will be:

x = [−0.0000 0.0000 − 0.0000 0.0000 0.2000]T
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Problem 6.3 - 5

Problem 6.3 - 5a

A = [5 7 6 5;7 10 8 7; 6 8 10 9; 5 7 9 10];
b = [1 -1 -1 1]’;

Using GEpivot,
format long
[x,lu,piv]=GEpivot(A,b);
x

the result will be:

x = 1.0e002 ∗


1.35999999999997
−0.81999999999998
−0.34999999999999
0.20999999999999

 ,

but using GEdemo,

x=GEdemo(A,b,16)

the result is:

x = 1.0e002 ∗


1.36000000000000
−0.82000000000000
−0.35000000000000
0.21000000000000

 ,

Interestingly, using GEdemo with severely reduced precision:

x=GEdemo(A,b,3)

gives an apparently more accurate result:

x = [136, −82, −35, 21]

however this is illusory, since only the integer portions of these numbers are significant.
By coincidence, the exact solution happens to be integers.
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Problem 6.3 - 5b

Using GEpivot:

x = 1.0e004 ∗


0.05160000000000
−0.56999999999995
1.36199999999987
−0.88199999999992

 ,

and with GEdemo:

x = 1.0e004 ∗ [0.0516, −0.5700, 1.3620, −0.8820]

Problem 6.5 - 1

The program is shown below:

function [x,r,e,s,t]= SOLEQ(A,b)
x=GEpivot(A,b);
r=b-A*x;
e=GEpivot(A,r);
s=x+e;
norm(e)/norm(x);

Problem 6.5 - 1a

x̂ = [0.02000000,−0.03000000, 0.05000000, 0.03000000]T

r = [0.05551115E − 15, 0.0, 0.11102230E − 15, 0.02775557E − 15]T

ê = [0.13877787E − 15, 0.27755575E − 15, 0.44408920E − 15, 0.61062266E − 15]T

x̂ + ê = [0.02000000,−0.03000000, 0.05000000, 0.03000000]T

‖ê‖
‖x̂‖

= 1.19E − 14

Problem 6.5 - 1b

x̂ = [0.99999999, 1.00000000, 1.00000000, 1.00000000]T

r = [0.35527136E − 14, 0.0, 0.0, 0.0]T
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ê = [0.24158453E − 12,−0.1456612E − 12,−0.06039613E − 12, 0.03552713E − 12]T

x̂ + ê = [1.00000000, 0.99999999, 0.99999999, 1.00000000]T

‖ê‖
‖x̂‖

= 1.45E − 13

Problem 6.5 - 1c

x̂ = [33.999999,−695.999999, 3191.999999,−5012.000000, 2520.000000]T

r = [−0.056843E − 12,−0.193289E − 12,−0.090927E − 12,−0.068223E − 12]T

ê = [−0.006595E − 8, 0.136151E − 8,−0.615430E − 8, 0.955502E − 8,−0.476088E − 8]T

x̂ + ê = [33.999999,−695.999999, 3191.999999,−5011.000000, 2519.000000]T

‖ê‖
‖x̂‖

= 1.91E − 12

This is a very ill-conditioned linear system. Iterative improvement (residual correction)
will fix the solution (Try it!).

Problem 6.5 - 3

A =
[

5 7
7 10

]
, A−1 =

[
10 −7
−7 10

]
‖A‖1 = 17,

∥∥A−1
∥∥

1
= 17, cond(A) = 289

The row sum norm has been used in the calculation above for simplicity.
The two equations in (6.86) can be rewritten as,

x1 + 1.4x2 = 0.14
x1 + 10/7x2 = 1/7

These have graphs that are almost parallel straight lines. Changing the right side by
a small amount means changing the y-intercepts of these lines by a small amount. But
because they are almost parallel, it changes their intersections by a relatively large amount.

Problem 6.5 - 4

A =
[

19 20
20 21

]
, ‖A‖1 = 41
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A−1 =
[
−21 20
20 −19

]
,

∥∥A−1
∥∥

1
= 41

cond(A) = ‖A‖
∥∥A−1

∥∥ = 41× 41 = 1681

As the condition number is very large, the system is ill-conditioned with respect to per-
turbations of the right-hand side constants {b1, b2}.

Problem 6.4 - 1

We illustrate hand calculation of an LU decomposition with strict partial pivoting, using
two different approaches to the permutation book-keeping. A strict partial pivoting scheme
requires that the largest entry in absolute value is always to be used as the pivot.
The system to be solved is:

A =

 1 2 1
2 2 3
−1 −3 0

 x1

x2

x3

 =

 0
3
2


Method 1: Direct Gaussian elimination, P on left hand side

We construct the decomposition directly as A = PLU . Both P and L start as identity
matrices and U starts as A.

PLU =

 1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 1 2 1
2 2 3
−1 −3 0


R2 ↔ R1

This give PLP ′U . Moving the P ′ matrix through L has no effect, since L is still the
identity matrix. This gives PP ′LU . The P ′ on the right of P has the effect of interchanging
columns 1 and 2 of P . The result is:

PLU =

 0 1 0
1 0 0
0 0 1

 1 0 0
0 1 0
0 0 1

 2 2 3
1 2 1
−1 −3 0


R2 ← R2 − (1/2)R1

R3 ← R3 + (1/2)R1

PLU =

 0 1 0
1 0 0
0 0 1

 1 0 0
1/2 1 0
−1/2 0 1

 2 2 3
0 1 −1/2
0 −2 3/2
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R2 ↔ R3

This gives PLP ′U . Moving the P ′ matrix through L interchanges columns 2 and 3, then
rows 2 and 3 of L. This gives PP ′LU . The matrix P ′ can be combined with P by
interchanging columns 2 and 3 of P . The result is:

PLU =

 0 0 1
1 0 0
0 1 0

 1 0 0
−1/2 1 0
1/2 0 1

 2 2 3
0 −2 3/2
0 1 −1/2


R3 ← R3 + (1/2)R− 2

PLU =

 0 0 1
1 0 0
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

 2 2 3
0 −2 3/2
0 0 1/4


Method 2: Direct Gaussian elimination, P on right hand side

We construct the decomposition directly as PA = LU . The P is kept track of separately.
The work can be done in situ. 1 2 1

2 2 3
−1 −3 0

 · · ·P =

 1 0 0
0 1 0
0 0 1


R2 ↔ R1  2 2 3

1 2 1
−1 −3 0

 · · ·P =

 0 1 0
1 0 0
0 0 1


R2 ← R2 − (1/2)R1

R3 ← R3 + (1/2)R1  2 2 3
1/2 1 −1/2
−1/2 −2 3/2

 · · ·P =

 0 1 0
1 0 0
0 0 1


R3 ↔ R3  2 2 3

−1/2 −2 3/2
1/2 1 −1/2

 · · ·P =

 0 1 0
0 0 1
1 0 0
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R3 ← R3 + (1/2)R2  2 2 3
−1/2 −2 3/2
1/2 −1/2 1/4

 · · ·P =

 0 1 0
0 0 1
1 0 0


This would be used in the form LUx = Pb. The result is the same as last time if we
multiply on the left by P−1 = P T ):

P T A = P T LU

 0 0 1
1 0 0
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

 2 2 3
0 −2 3/2
0 0 1/4


Problem 6.4 - 2

Problem 6.4 - 2a

LU factorization of A =

 2 1 −1
4 0 −1
−8 2 2

 , b =

 6
6
−8


LU = A 1 0 0

m21 1 0
m31 m32 1

×
 u11 u12 u13

0 u22 u23

0 0 u33

 =

 2 1 −1
4 0 −1
−8 2 2



Use Doolittle’s method (Crout’s algorithm):

First row multiplication:
u11 = a11 = 2, u12 = a12 = 1, u13 = a13 = −1

Second row multiplication:
m21 = a21

u11
= 2, u22 = a22 −m21u12 = −2, u23 = a23 −m21u13 = 1

Third row multiplication:
m31 = a31

u11
= −4, m32 = (a32 −m31u12)/u22 = −3,

u33 = a33 −m31u13 −m32u23 = 1
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Therefore: L =

 1 0 0
2 1 0
−4 −3 1

 , U =

 2 1 −1
0 −2 1
0 0 1



Problem 6.4 - 2b

Use the Matlab function
[L,U,P]=lu(A)

A =


2 1 −1 −2
4 4 1 3
−6 −1 10 10
−2 1 8 4

 , b =


2
4
−5
1



L =


1.0000 0 0 0
−0.6667 1.0000 0 0
0.3333 0.4000 1.0000 0
−0.3333 0.2000 0.5000 1.0000



U =


−6.0000 −1.0000 10.0000 10.0000

0 3.3333 7.6667 9.6667
0 0 1.6000 −3.2000
0 0 0 1.0000


We verify that LU = PA

LU = PA =


−6 −1 10 10
4 4 1 3
−2 1 8 4
2 1 −1 −2

,

where P records the row interchanges used during the factorization: P =


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
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Problem 6.4 - 2c

A =

 1 −1 2
−1 5 4
2 4 29

 , b =

 1
−3
15



L =

 1.0000 0 0
−0.5000 1.0000 0
0.5000 −0.4286 1.0000

 ,

U =

 2.0000 4.0000 29.0000
0 7.0000 18.5000
0 0 −4.5714


Verify that LU = PA

LU = PA =

 2 4 29
−1 5 4
1 −1 2

,

where P records the row interchanges used during the factorization: P =

 0 0 1
0 1 0
1 0 0


Problem 6.4 - 5

Problem 6.4 - 5a

We know that A = LU .
D is a non-singular matrix so we can say there exist D−1, such that DD−1 = I.

A = LU = LIU = LDD−1U = LD︸︷︷︸
L1

D−1U︸ ︷︷ ︸
U1

= L1U1

So, LU factorization is not unique.
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Problem 6.4 - 5b

Note that all these matrices are non-singular. Thus,

det A = detL1 det U1 = detL2 det U2 6= 0

⇒ The inverse matrices exist.

Multiply both sides of L1U1 = L2U2 by L−1
2 ( )U−1

1

L−1
2 L1U1U

−1
1 = L−1

2 L2U2U
−1
1

L−1
2 L1 = U2U

−1
1

Since L2 is lower triangular, L−1
2 is also triangular. The result of L−1

2 L1 and U1U
−1
1 will be

triangular, too. The same is for the right side, unless they are upper triangular matrices.
Since these two products are equal, they must be diagonal matrices. This fact requires D
to be a diagonal matrix.

Problem 6.4 - 6

Problem 6.4 - 6a

Cholesky factorization of symmetric matrices:

A = LLT

(a)

A =
[

1 −1
−1 5

]
, L =

[
l11 0
l21 l22

]

LLT =
[

a 0
b c

] [
a b
0 c

]
=

[
1 −1
−1 5

]
[

a2 ab
ab b2 + c2

]
=

[
1 −1
−1 5

]
a and c should be positive, ⇒ a = 1, b = −1, c = 2.
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Problem 6.4 - 6b

A =

 2.25 −3 4.5
−3 5 −10
4.5 −10 34


Similarly we get L as, L =

 1.5 0 0
−2.0 1 0
3.0 −4 3


Problem 6.4 - 8

Using the provided m-file tridiag

A=[ 2 1 0 0 0;1 2 1 0 0;0 1 2 1 0;0 0 1 2 1;0 0 0 1 2];
f=[1 0 0 0 0 0]’;
a=[0,1,1,1,1];
b=[2,2,2,2,2];
c=[1,1,1,1];
n=5;
[x, ier, alpha, beta]=tridiag (a,b,c,f,n,iflag);
x

The result will be: x = [0.8333,−0.6667, 0.5000,−0.3333, 0.1667]T .

Problem 6.4 - 10

As in previous problem, using tridiag

n=100;
f=ones(n,1);
a=ones(n,1);
c=a;
a(1)=0;
c(n)=0;
b=4*f;
iflag=0;
[x, ier, alpha, beta]=tridiag (a,b,c,f,n,iflag);
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x

The result will be:

x = [0.2113 0.1547 0.1699 0.1658 0.1669 0.1666 0.1667 0.1667 ...
0.1667 0.1667 0.1667 0.1666 0.1669 0.1658 0.1699 0.1547 0.2113]T .
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